Notation

 $\mathbb{Z} =$ the set of integers $\mathbb{N} = \{n \in \mathbb{Z} : n \geq 1\}$ $\mathbb{R} =$ the set of real numbers $\mathbb{Q} =$ the set of rational numbers $\mathbb{C} =$ the set of complex numbers

(1) Let X be a compact topological space. Suppose that for any $x, y \in X$ with $x \neq y$, there exist open sets U_x and U_y containing x and y, respectively, such that

$$
U_x \cup U_y = X \quad \text{and} \quad U_x \cap U_y = \emptyset.
$$

Let $V \subseteq X$ be an open set. Let $x \in V$. Show that there exists a set U which is both open and closed and $x \in U \subseteq V$.

(2) Let $C[0, 1]$ denote the set of all real-valued continuous functions on $[0, 1]$. Consider the normed linear space

$$
X = \{ f \in C[0,1] : f(\frac{1}{2}) = 0 \},\
$$

with the sup-norm, $||f|| = \sup\{|f(t)| : t \in [0, 1]\}.$ Show that the set $P = \{f \in X : f \text{ is a polynomial } \}$

is dense in X.

(3) Let $g: [0, \frac{1}{2}] \to \mathbb{R}$ be a continuous function. Define $g_n: [0, \frac{1}{2}] \to \mathbb{R}$ by $g_1 = g$ and

$$
g_{n+1}(t) = \int_0^t g_n(s) \, ds,
$$

for all $n \geq 1$. Show that

$$
\lim_{n \to \infty} n! g_n(t) = 0,
$$

for all $t \in [0, \frac{1}{2}].$

(4) Let $\sum_{n\geq 1} a_n$ be an absolutely convergent series of complex numbers. Let

$$
b_n = \begin{cases} a_n & \text{if } 1 \le n < 100 \\ \frac{n+1}{n^2} a_n^2 & \text{if } n \ge 100. \end{cases}
$$

Prove that $\sum_{n\geq 1} b_n$ is an absolutely convergent series.

(5) Let $f : [0,1] \times [0,1] \rightarrow [0,\infty)$ be a continuous function. Suppose that \int_0^1 0 \int_0^1 0 $f(x, y) dy$ $dx = 0$.

Prove that f is the identically zero function.

(6) Let m denote the Lebesgue measure on $[0, 1]$. Give an example of a sequence of continuous functions $\{f_n\}_{n\geq 1} \subseteq L^1[0,1]$ such that

$$
\sup_{t \in [0,1]} |f_n(t)| = 1,
$$

for all n and

as
$$
n \to \infty
$$
.

$$
\int_0^1 |f_n| dm \to 0,
$$

(7) Let Γ denote the positively oriented circle of radius 2 with center at the origin. Let f be an analytic function on $\{z \in \mathbb{C} : |z| > 1\}$, and let

$$
\lim_{z \to \infty} f(z) = 0.
$$

Prove that

$$
f(z) = \frac{1}{2\pi i} \int_{\Gamma} \frac{f(\zeta)}{z - \zeta} d\zeta,
$$

for all $z \in \mathbb{C}$ with $|z| > 2$.

- (8) Prove that there is no sequence of complex polynomials that converges to $\frac{1}{z^2}$ uniformly on the annulus $A = \{z \in \mathbb{C} : 1 < |z| < 2\}.$
- (9) Consider the differential equation

$$
\dot{x} = x(1-x) - \frac{1}{4},
$$

where $\dot{x} = \frac{dx}{dt}$. For any solution $x(t)$, find the limit of $x(t)$ as $t \to \infty$.

(10) Consider the system

$$
\dot{X} = \left(\begin{array}{cc} \lambda & 1\\ 0 & \lambda \end{array}\right)X
$$

where $X(t) = \binom{x(t)}{x(t)}$ $\hat{X}^{(t)}(t),\,\dot{X}:=\frac{dX}{dt}=\binom{\dot{x}(t)}{\dot{y}(t)}$ $\langle \dot{x}(t) \rangle$ and λ is a fixed real number. Show that if $\lambda < 0$ then $X(t) \to {0 \choose 0}$ and $X(t)$ is asymptotic to the line $y = 0$ in the xy-plane, as $t \to \infty$.

